Compound interest describes growth or decay when the percentage is applied each period to the previous value.
Compound growth
$$A=P\times\left(1+\frac{r}{100}\right)^{t}$$
where,
A— final value;
P— initial value;
r— periodic growth rate (percent);
t— number of periods.
Compound decay
$$A=P\times\left(1-\frac{r}{100}\right)^{t}$$
where,
A— final value;
P— initial value;
r— periodic decay rate (percent);
t— number of periods.